Anthracene as a sensitiser for near-infrared luminescence in complexes of Nd(III), Er(III) and Yb(III): an unexpected sensitisation mechanism based on electron transfer.

نویسندگان

  • Theodore Lazarides
  • Mohammed A H Alamiry
  • Harry Adams
  • Simon J A Pope
  • Stephen Faulkner
  • Julia A Weinstein
  • Michael D Ward
چکیده

The ligand L(1), which contains a chelating 2-(2-pyridyl)benzimidazole (PB) unit with a pendant anthacenyl group An connected via a methylene spacer, (L(1) = PB-An), was used to prepare the 8-coordinate lanthanide(III) complexes [Ln(hfac)(3)(L(1))] (Ln = Nd, Gd, Er, Yb) which have been structurally characterised and all have a square antiprismatic N(2)O(6) coordination geometry. Whereas free L(1) displays typical anthracene-based fluorescence, this fluorescence is completely quenched in its complexes. The An group in L(1) acts as an antenna unit: in the complexes [Ln(hfac)(3)(L(1))] (Ln = Nd, Er, Yb) selective excitation of the anthracene results in sensitised near-infrared luminescence from the lanthanide centres with concomitant quenching of An fluorescence. Surprisingly, the anthracene fluorescence is also quenched even in the Gd(III) complex and in its Zn(II) adduct in which quenching via energy transfer to the metal centre is not possible. It is proposed that the quenching of anthracene fluorescence in coordinated L(1) arises due to intra-ligand photoinduced electron-transfer from the excited anthracene chromophore (1)An* to the coordinated PB unit generating a short-lived charge-separated state [An(.+)-PB(.-)] which collapses by back electron-transfer to give (3)An*. This electron-transfer step is only possible upon coordination of L(1) to the metal centre, which strongly increases the electron acceptor capability of the PB unit, such that (1)An* --> PB PET is endoergonic in free L(1) but exergonic in its complexes. Thus, rather than a conventional set of steps ((1)An* -->(3)An* --> Ln), the sensitization mechanism now includes (1)An* --> PB photoinduced electron transfer to generate charge-separated [An(.+)-PB(.-)], then back electron-transfer to generate (3)An* which finally sensitises the Ln(III) centre via energy transfer. The presence of (3)An* in L(1) and its complexes is confirmed by nanosecond transient absorption studies, which have also shown that the (3)An* lifetime in the Nd(III) complex matches the rise time of Nd-centred near-infrared emission, confirming that the final step of the sequence is (3)An* --> Ln(III) energy-transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ru(II) sensitized lanthanide luminescence: synthesis, photophysical properties, and near-infrared luminescent determination of alpha-fetal protein (AFP).

A series of dinuclear compounds of [Ru(bpy)(2)(tpphz)Ln(TTA)(3)](PF(6))(2) (tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:3''',4'''-j]phenazine; Ln = Er(III), Nd(III), Yb(III) and Gd(III); TTA = 2-thenoyltrifluoroacetone) have been prepared by attachment of a [Ln(TTA)(3)] fragment at the vacant diimine site of the luminescent mononuclear complex [Ru(bpy)(2)(tpphz)](PF(6))(2). In the solid state, ...

متن کامل

Tuning the decay time of lanthanide-based near infrared luminescence from micro- to milliseconds through d-->f energy transfer in discrete heterobimetallic complexes.

Inert and optically active pseudo-octahedral Cr(III)N6 and Ru(II)N6 chromophores have been incorporated by self-assembly into heterobimetallic triple-stranded helicates HHH-[CrLnL3]6+ and HHH-[RuLnL3]5+. The crystal structures of [CrLnL(3)](CF(3)SO(3))(6) (Ln=Nd, Eu, Yb, Lu) and [RuLnL3](CF3SO3)5 (Ln=Eu, Lu) demonstrate that the helical structure can accommodate metal ions of different sizes, w...

متن کامل

Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes.

This work illustrates a simple approach for optimizing long-lived near-infrared lanthanide-centered luminescence using trivalent chromium chromophores as sensitizers. Reactions of the segmental ligand L2 with stoichiometric amounts of M(CF(3)SO(3))(2) (M = Cr, Zn) and Ln(CF(3)SO(3))(3) (Ln = Nd, Er, Yb) under aerobic conditions quantitatively yield the D(3)-symmetrical trinuclear [MLnM(L2)(3)](...

متن کامل

Rare Earth Nitrate Complexes with an ONO Schiff Base Ligand: Spectral, Thermal, Luminescence and Biological Studies

Five rare earth complexeslanthanum(III),praseodymium(III),neodymium(III), samarium(III) and europium(III) have been synthesized from Schiff base ligand (N,N-bis (2-hydroxy-1-naphthylidene) acetylhydrazone). The complexes were characterized based on elemental analysis, molar conductance, ultraviolet, infrared, mass, thermogravimetric and powder X-ray diffraction studies. Infrared spectra sug...

متن کامل

Near-infrared luminescence from visible-light-sensitized hybrid materials covalently linked with tris(8-hydroxyquinolinate)-lanthanide [Er(III), Nd(III), and Yb(III)] derivatives.

A series of new near-infrared (NIR) luminescent lanthanide-quinolinate derivatives [Ln(Q-Si)(3)] and xerogels (named as LnQSi-Gel, Ln = Er, Nd, Yb) covalently linked with the Ln(Q-Si)(3) by using the 8-hydroxyquinoline-functionalized alkoxysilane (Q-Si) have been synthesized. The obtained xerogel materials LnQSi-Gel are rigid and show homogeneous by field-emission scanning electron microscopy (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2007